
Ephemeral Interaction Using Everyday Objects

James A. Walsh, Stewart von Itzstein and Bruce H. Thomas
School of Computer and Information Science

University of South Australia

Mawson Lakes Boulevard, Mawson Lakes, South Australia, 5095

james.walsh@setoreaustralia.com, stewart.vonitzstein@unisa.edu.au,

bruce.thomas@unisa.edu.au

Abstract

The ability for Tangible User Interfaces to enable the

intuitive control of existing systems and adapt to individual

users’ usage scenarios remains an area of development.

Previous research in customizable tangible interfaces has

focused primarily on the offline creation by the original

system developer, instead of offering extensibility to the

end user. This paper presents our system to support the ad-

hoc creation of ‘disposable’ UIs using both projected

controls and physical objects. To support these controls, a

software based patch panel enables data to be mapped to

external systems, and from external systems back to the

system itself. Using a projector, depth camera and 6DOF

tracking system, users can create and map tangible/touch-

based ad-hoc user controls to existing system functionality.

This allows users to both quickly create new inputs for

existing functionality, as well as create new arbitrary input

devices from completely passive components.

Keywords: user interfaces, ephemeral, tangible,

projected, extensible customizable, reconfigurable.

1 Introduction

Following the concept of Ephemeral User Interfaces (EUI)

(Doring et al., 2013) as a temporary means of

communication, we extend this concept to allow the user

to construct disposable (ad-hoc) UIs to control existing

systems and applications using physical objects (tangibles)

and projected content in the environment. These temporary

UI’s are designed to support the creation of UIs to control

a subset of a system’s existing functionality for short term

usage (minutes to hours). For example, when cooking in the

kitchen, users often need to quickly create a timer based on

the current recipe’s task. This could easily be done by

allowing the user to rotate a kitchen utensil on the counter to

set the time. A projector displays the time, with adjustments

made by further rotations. This leverages the affordances of

objects available in a natural, tangible interaction.

The motivation for these interfaces comes from the need to

enable a system with a known set of functions to adapt to

the context and capabilities of the user at time of use,

something the original designer cannot envision. For the

kitchen timer scenario, we know that a timer will be

required, but not the parameters or the context, given the

user may have limited space or be limited to one handed

interaction. Similarly, someone sitting on the couch can

quickly draw a line armrest to control the volume/channel

whilst resting their arm on the arm rest. As such, there is a

need for ad-hoc controls that enable users to rapidly create

controls based on the current context, ideally leveraging

the affordances of the immediate environment. Previous

touch-based systems (Akaoka et al., 2010, Henderson and

Feiner, 2008, Xiao et al., 2013), have shown a need for ad-

hoc interaction, but were designed for developers,

excluded tangible interactions and did not support the

integration with existing systems.

Whilst previous work (Akaoka et al., 2010, Avrahami and

Hudson, 2002) has looked at creating interactive

prototypes from passive materials, all interaction has been

touch based, ignoring the geometric and spatial

relationships that Tangible User Interfaces (TUIs) (Ishii

and Ullmer, 1997) offer. Our work focuses on the end user,

enabling them to utilize the proxemic relationships

(position, orientation, visibility, etc.) of objects available

in the immediate environment, as well as touch interaction

as a means of input. We believe TUIs to be a key

component in ad-hoc interaction that is yet to be explored.

In this paper, we explore the application of non-traditional

tangible interaction to ad-hoc EUIs. We are interested in

the use of everyday objects as props for supporting TUIs

and the use of projectors to augment the user’s workspace.

Through the use of a software patch panel, such as

Ballagas et al. (2004), we can isolate the UI from the

application being controlled. This allows information to

flow from the user defined UI, through the patch panel to

the end application. This means the system to create the

UIs and the systems/functions to be controlled can be

developed independently. This paper makes the following

contributions:

 we present extensions to an existing TUI

architecture to support ephemeral touch and

tangible UIs, including support for incorporating

input from external systems,

 a paradigm to support ephemeral UIs for a wide

range of existing GUI input controls, and

 a mechanism to develop ephemeral input devices

from passive components using touch and

geometric relationships.

The first contribution addresses the core system design to

support ad-hoc controls and interactivity, including

integration with existing arbitrary systems. We present an

implementation of a software patch panel for our architecture

that is capable of passing parameters to individual

applications provided by the end user. This allows the user to

integrate the ad-hoc controls with any existing system. This

patch panel also allows inputs to be passed into the system

from external systems, allowing the incorporation of input

Copyright © 2014, Australian Computer Society, Inc. This paper

appeared at the Fifteenth Australasian User Interface Conference

(AUIC 2014), Auckland, New Zealand. Conferences in Research

and Practice in Information Technology (CRPIT), Vol. 150.

Burkhard Wünsche and Stefan Marks, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is

included.

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

29

methods not supported by the original system, as well as

support for feedback loops.

The second contribution describes a comprehensive set of

example interactions to control existing applications. These

are based on the existing tangible controls and the results of a

preliminary study.

The final contribution outlines methods for allowing the user

to create interactive, novel tangible UIs on-the-fly from

passive physical components that utilize both touch and the

geometric relationships both of-and-between objects. This

allows the user to create disposable controls, on demand.

Following this, our work focuses on ‘what’ functions to

perform, not ‘how’ to do them, extending our previous work

in tangible programming by demonstration (Walsh et al.,

2013). We acknowledge a number of our concepts require

ubiquitous and highly portable sensing and projection

technologies. In this paper, we are only focused on the

architecture and methods to support interactions.

The remainder of this paper is structured as follows: related

work is discussed, identifying related projects and influential

factors. A summary of the system and how it is used is

provided, providing a number of example applications. A

preliminary study that served as the initial design phase is then

described, leading into a description of the system

implementation and design. We then conclude with future

work and final thoughts.

2 Related Work

Our work follows previous human computer interaction

work relating to TUIs, reconfigurable UIs, and their

supporting architectures.

Doring et al. (2013) presented the ideas of EUIs as UIs that

have at least one element designed for limited time use.

They defined a design space for EUIs incorporating a)

materials, b) interactions (input vs. output) and c) aspects

of ephemerality. Using this design space, our work is

focused on selecting the right material for the job (a),

primarily as a form of input (b). Their exploration of

ephemerality came from the materials used (fog, ice, jelly,

etc.). We however utilize multiple objects that when

together, serve as an appropriate input EUI, but when split

apart fulfil their original roles (c). Despite objects being

persistent on their own, it is their utility together that is

ephemeral.

2.1 Tangible UIs

TUIs utilize the affordances of physical objects, spaces and

surfaces as an interface to digital functionality (Ishii and

Ullmer, 1997). Fitzmaurice et al. (1995) began exploring

TUIs as Graspable UIs, using 6DOF tracked ‘bricks’ to

manipulate digital elements This allowed users to explore

the advantages of bi-manual, spatial interaction with

digital functionality. Despite the nature of ad-hoc

interaction meaning we are surrounded by tangible objects,

previous work has failed to leverage TUIs on an equal level

to ad-hoc touch interaction.

The embodiment of TUIs led to the creation of Organic

User Interfaces (OUIs) (Holman and Vertegaal, 2008),

exploring non-planer displays that are both input and

output. This embodiment blurs the distinction between

input and output and closely mirrors the feedback loop that

we experience in the real world with cause and effect

(Sharlin et al., 2004).

Ullmer (2002) proposed a TUI architecture equivalent to

the GUI Model-View-Controller (MVC) architecture,

identifying three categories of TUIs; interactive surfaces,

constructive assemblies, and Tokens and Constraint

(TAC). These TACs utilized the unique affordances of

individual objects as logical constraints on the object. For

example, an elongated groove suggests placing an object

in that groove to assign a value across a range. It is these

kinds of affordances that this work hopes to leverage.

2.2 Reconfigurable TUIs

Akaoka et al. (2010) explored the creation of active

prototypes from passive materials as DisplayObjects.

Using markers to track a passive object, predesigned

virtual content (buttons, displays, etc.), designated as

inputs or outputs, can be dragged from a Physical-Virtual

palette onto the object. Pressing ‘Play’ on the palette

allowed users to interact with the device. More intricate

interactions between input and output controls was

possible using the computer to generate scripts.

Avrahami, and Hudson (Avrahami and Hudson, 2002)

used push-pin enabled RFID buttons and sliders to

prototype input devices, enabling reconfiguration of

physical inputs for non-planar surfaces. Building on this,

the BOXES project (Hudson and Mankoff, 2006) looked

at using thumbtacks attached to a circuit board to trigger

user-defined macros. Upon touching a thumbtack, the

software could emulate a touch at a given screen

coordinate or simulate any number of predefined

mouse/keyboard inputs, essentially defining a macro.

Using the tacks with cardboard and tape allowed users to

quickly prototype button based interaction on physical

prototypes.

Both Phidgets (Greenberg and Fitchett, 2001) and

VoodooIO (Villar et al., 2006) explored configurable

component based UIs. Both systems offered a number of

input controls and could be reused and repositioned, with

Phidgets using cables to connect to a PC and VoodooIO

using push-pin components to link to a conductive

communication layer in a foam substrate. The processing

of the input into system functionality was an offline

process done by the developer. Whilst both enabled ad-hoc

reconfiguration, the user was limited by components for

which they do not have an input device.

In exploring touch-based UIs, Light Widgets (Fails and

Olsen, 2002) explored ubiquitous touch interaction using

cheap, pervasive cameras. Using a PC application to select

an input type and a region on a camera’s viewport for the

control to be located, users could touch that location to

interact. Aside from the offline creation of the UI controls,

there was no feedback to the user aside from whatever

function was being controlled by that input. Tangible

interaction outside of touch was also not supported.

Henderson and Feiner explored Opportunistic Controls

(OCs) (Henderson and Feiner, 2008) to enable natural

navigation of situated Augmented Reality (AR) systems,

CRPIT Volume 150 - User Interfaces 2014

30

whilst leveraging passive feedback from the environment.

Buttons, dials, etc. would utilize physical surfaces and take

advantage of the affordances of those surfaces, e.g. a dial

using a rotating bolt. Given the focus on AR for

mechanical instruction, the OCs were predefined using

knowledge of the environment the user would be in (e.g.

located in front of a certain model of aircraft engine). As a

future direction, Henderson and Feiner (2010) identified

the capability for a user to locate an object, select a widget

type and specify the mapping for that object. This work

directly addresses that void.

2.3 Interaction Toolkits

Whilst frameworks exist to abstract TUIs and facilitate

easier access, they are primarily for the developer.

WorldKit (Xiao et al., 2013) provided developers with a

software framework that uses a projector/depth camera

pair to enable pervasive interaction. By abstracting the

sensing and projection system to provide the developer

with simple events, the developer can easily create

applications that respond to real world manipulation, such

as touch input and object presence. Despite enabling

pervasive interaction in the environment, the system

cannot be customized given the controls and their

functions are defined by the original developer of the

application. Our work addresses this void.

The Papier-Mâché (Klemmer et al., 2004) project enabled

the fusion of different sensor inputs, allowing the

developer to focus on events, rather than hardware sensors.

This is along a similar line to the Proximity Toolkit

(Marquardt et al., 2011) in providing a set of abstracted

proxemic events both within and between objects.

Kjeldsen et al. (2003) abstracted visual input, but allowed

the application to ask middleware for a given input (e.g. a

button), and have that control be dynamically created

given current context.

Hardy and Alexander (2012) provided a toolkit for

developing interactive projected displays. Focusing on

developers, it abstracts the projectors and sensing

hardware to provide information about touch-based

interaction. This allowed the developer to focus on the

application content and interactivity rather than managing

display surfaces and their relation to sensed input. Our

work focuses uses a similar approach to enable UI creation

by end users, rather than developers.

2.4 Summary

Despite work looking at reconfigurable touch and tangible

interfaces, previous attempts have stopped short of

enabling completely ad-hoc interaction for arbitrary TUIs,

instead focusing on touch interaction, primarily with some

offline component for the mapping of them to a function

to control. Following on from WorldKit and the future

work identified by Henderson and Feiner in OCs, this work

seeks to enable end users to define tangible and projected

controls for existing functionality, whilst also integrating

existing systems as a form of input.

3 Using Our EUI’s

Our implementation uses a projector and depth camera

(Kinect) along with an Optitrack 6DOF tracking system,

used to identify objects between frames. Using a

combination of the Kinect and Optitrack retro-reflective

marker trackers, we can detect touches, objects and

contours (using the Kinect) as well the position, orientation

and visibility of objects (using the Optitrack). In the future

we envision that RGBD cameras combined with computer

vision algorithms will replace the need for the 6DOF

sensing technology currently used. The system runs ~56fps

during use. The Kinect faces down onto a tabletop where

all controls are initially authored.

To illustrate how to use the system, we shall use an

example of navigating a slideshow using whiteboard

marker. Under normal usage, the selection of the

function/system to control would be based on the user’s

current context.

As a means to “boot strap” our system, we use a Griffin

PowerMate (supporting a button, rotation sensor and blue

LED) as the initial means of input, however we do not

utilize the rotation function (the justification for the button

is provided in Section 4). To provide feedback to the user

regarding when the system expects input via the button or

touch input, the button’s LED glows (1Hz) when the

button can be used. In the future, we will investigate other

modes of engaging the system that do not require an

external input device.

To create a new input control, the user first presses the

button. The different functions available for control

(defined and grouped hierarchically in an XML file,

discussed later) are then displayed as buttons. The user

then touches the function they wish to create a control for.

In this example, the user would select the ‘PowerPoint’

group and select the ‘Next Slide’ function.

It is at this point the system requires an understanding of

what application function the user requires a new control

for. Depending on how many parameters the function

requires (also defined in the XML), different input controls

can be used. For example, setting the volume would

require a parameter from a valuator. In our slideshow

example, the “Next Slide” function does not require any

parameters. The different options available for controlling

Figure 1: Interacting with dial control (a), slider control on an object (b), interactive lever (c) and improvised

joystick (d)

(a) (c) (d) (b)

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

31

that function are presented to the user as projected touch

buttons. Upon selecting one, the user is guided through

creating that control. For our “Next Slide” function, we

select “Object Orientation” and place the marker we want

to use on the table and then press the button to confirm the

object selection. The system then prompts the user to

orientate the object and the press the button. We hold the

marker and point to the right side of the room and press the

button. This links this orientation of the marker to the

“Next Slide” function, allowing us to point the marker to

the right to navigate to the next slide. This means we can

now walk around the room, taking the user control

(marker) with us, navigating the slides as required,

something not possible with previous touch based systems.

The same process can then be repeated for going to the

previous slide. The whole process of creating a new control

takes only seconds and single object can be used in

multiple interactions simultaneously, e.g. a marker used as

a joystick (Figure 1d) to define both an X and Y value.

When creating projected controls, the process involves the

user using their finger to define that control on a surface.

For example, to define a dial control the user touches the

center of its location and drags out the radius and then

continues dragging to define the size of the dial’s

arc/circle. Projected controls can utilize any physical

objects as part of the interaction (e.g. a lever’s handle can

trigger a virtual button).

To edit controls already created, the user holds the button

for more than one second. Projected controls then begin to

wobble in a similar fashion to the press-hold-wobble

interaction on mobile devices. Users can then touch and

drag controls around the table, or drag them off the bottom

of interaction area to remove them. To edit object-based

interactions, the involved object is placed in the middle of

the table, at which time the system presents buttons for

each interaction involving that object. These buttons can

then be dragged off the table to delete the interaction

associated with that object.

3.1 Example Applications

We have created a number of example mappings to control

different applications across a number of domains to

demonstrate the system’s functionality.

Video Editor: The user views the video on an external

screen, with the system creating controls for the timeline

and cutting/joining sections of the film. The most basic

controller would be a slider with (at least) two buttons for

cutting/saving the film (Figure 2), but could be more

elaborate using a guillotine prop to ‘cut’ the film and

Figure 2: Ad-hoc video editing controls on their own

(left) and supplementing the existing controls (right)

another to join it. Different video clips to be split can be

associated with different objects, allowing the user to

rapidly switch between clipping/joining different files.

Audio Mixer: Allows the user to load and control media

whilst adjusting individual audio channels and settings,

creating an on demand, customizable DJ-style mixing

board. What is novel is the user can create as many controls

as required for the particular task, and destroy them when

not required. Because the system is not limited to vertical

or horizontal controls, the channels could be linked to

dials, sliders and levers, etc., located at different positions

and orientations surrounding the user, instead of having

controls laid out in a linear fashion. Tangible objects

provide persistence, visual feedback, and tactile feedback.

The use of an application supporting MIDI mappings

would enable integration with thousands of existing

applications outside of just PC audio applications.

Figure 3: Basic multichannel ad-hoc audio control

board

Game Controller: Allows customizable game controllers

to be created. Given the ability to use passive objects as

active input, users can use a child’s pretend steering wheel

as an ad-hoc means of controlling racing applications, such

as with the AR simulation by Oda et al. (2007).

Since controls can quickly be created with arbitrary

materials and turned into functional interfaces, another

application is for developing user controls without having

to integrate electronics with each iteration, e.g. using 3D

printers. Figure 1c depicts a 3D printed throttle-style lever

found in airplanes that could work as a functional input

device for a flight simulator, without requiring

modifications to the game. Despite this application not

directly being ad-hoc, we can still leverage near-by

materials to quickly create such controls in an ad-hoc

manner, where inputs are dynamically created on the fly

from passive materials.

We envision applications to developing large scale user

controls. By utilizing a realistic simulator using the

required mappings, we can design industrial control rooms

whilst controlling a working simulation with passive input

controls. This allows the user to experiment with

configurations for different scenarios (e.g. day-to-day

versus an emergency) inside the simulator, creating

controls as needed.

4 Preliminary Study

A preliminary study was conducted in the initial design

stages to evaluate how users would ideally create controls

to interact with existing systems. This study was similar to

CRPIT Volume 150 - User Interfaces 2014

32

that used by Henderson and Feiner (2010) for OCs.

Participants were given a number of everyday arbitrary

objects (blocks, pens, smart phones, scissors, etc.) and

asked to create UIs to control different tasks (selection, text

entry, path definition, etc.) across different applications

(both within and outside the users reach) using three types

of UIs: touch, passive tangible and active tangible.

Participants were surrounded by writable surfaces

(whiteboard and paper covered surfaces) and asked to

create controls for the tasks using the materials available.

They were told to assume the system was ‘all seeing’ and

asked to sketch out their ideas, experiencing a Wizard of

Style evaluation. They were asked to describe the order

they expected to be able to performed certain interactions,

what navigation aids should be present and when/how to

edit existing inputs, etc. Devices, menus and other content

described was created using available materials. By

evaluating the different types of input devices the users

constructed from the available materials, as well as the

manner and order in which they constructed them, we

evaluated the types of ad-hoc controls the system should

support, as well as how they expected to be able to create

them within the system. Approximately half of the

participants had a computer-science background.

When asked about the procedure for creating controls,

participants responded that the system should enable the

user to select the function to control first, followed by

selecting the input device and then how that device is

mapped to the function. It was mentioned that the main

thing they were thinking about was what function to

control, and thus needed to “offload” that information into

the system as soon as possible. This supports the workflow

suggested at the conclusion of the work on OCs

(Henderson and Feiner, 2010). When asked how the user

should be able to select the function to control from a large

set, participants said that functions should be able to be

grouped, with the user first selecting the function group,

then selecting the function itself.

For the primary means of navigating the system, most

participants wanted a different form of interaction than that

supported by the system, i.e. use of a physical button

instead of a touch-based button if interacting by touch.

This was described as helping separate defining controls

versus navigating the system. The workflow of the final

system was followed these results.

Participants used both traditional touch controls (buttons,

dials, etc.) and proxemic relationships (between and within

objects). Occasional hybrids were created where a tangible

object would interact with a touch-based control,

triggering the input, in addition to the tangible object’s

own explicit input, e.g. a lever handle touching a virtual

button.

The different types of touch-based controls and

interactions using objects served as the first types of

interactions that were implemented in the system. The

study also served as inspiration for how the user should be

able to navigate the system and the information flow

between user and system for creating interactions.

5 Supported User Controls

By sensing different types of user actions with physical

objects and extending touch interaction to use arbitrary

surfaces, we can create a functionally comprehensive set

of UI controls to enable the user to both control existing

computer applications and create new input devices in their

Table 1: Mapping existing controls GUI/physical against how they can be controlled in the system (☑ Supported)

 Physical Touch

 Position Orientation

Object
Between
Positions

Object
in

Position

Object

is

Visible

Object

Proximity
Object in

Orientation

Object
Between

Orientations

Continuous Boolean Boolean

Boolean and
Continuous

Boolean Continuous
Boolean and
Continuous

Controls Button ☑ ☑ ☑ ☑ ☑

 Radio Button ☑ ☑ ☑ ☑ ☑ ☑

 Slider ☑ ☑ ☑ ☑

 List Box ☑ ☑ ☑ ☑ ☑

 Spinner ☑ ☑ ☑ ☑ ☑ ☑

 Menu ☑ ☑ ☑ ☑ ☑

 Tab ☑ ☑ ☑ ☑ ☑

Input
Device

Mouse ☑ ☑ ☑

Keyboard ☑

Joystick ☑ ☑ ☑

Steering Wheel ☑ ☑ ☑

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

33

own right. Our initial demonstration of the concept

employs the position, orientation, visibility or proximity of

one or more physical objects and emulate touch interaction

on objects and surfaces using a depth camera. By

monitoring these types of interactions, we can support all

the types of controls and interactions described in the

preliminary study. Table 1 describes how our initial set of

sensed user actions can be used to emulate and recreate a

wide range of traditional system inputs. The column

headings describe the different capabilities for input

detection in our implementation, supporting both Boolean

and continuous values. For a nullary function (one with no

parameters, such as a button press) we sense one of the

following properties of the object in relation to the sensed

working space: visibility, absolute position (3D), and

absolute orientation (all three angles), two objects within a

set proximity as well as supporting touch-based buttons.

For a single continuous value, the following relative

geometric relationships are available: the position of an

object relative to two 3D points, the orientation of an

object relative to two defined start and end angles, distance

between two objects as well as the value of a touch-based

slider or dial. Functions requiring two parameters can

utilize a projected touchpad.

To enable extensibility, external applications can provide

input to the system as if it were native input. These external

applications either call an application “SendInput.exe” or

connect to the system via TCP socket to send data. The

external system sends a keyword to uniquely identify the

input as well as any parameters for that input, e.g. the value

from a joystick as “joystick 23 60” for the X and Y values.

In the case of calling SendInput.exe, the keyword and

values are just passed as arguments when the application

is executed. This simple approach allows external systems

to integrate other capabilities not currently supported, such

as gesture, voice, pressure, light, etc. with minimal code.

In Table 1, the checked boxes indicate particular GUI

controls that are currently supported and implemented in

either touch or tangible form. While we could conceive

controls for every position in the table, the checkboxes

represent the “sensible” interactions. Using data from

6DOF tracking and depth camera systems, we can map the

input sensed as controls to both control existing

applications and to emulate/create physical input devices.

5.1 GUI Control Substitution

As discussed previously, a user can quickly create new

controls in only three-to-four steps to compliment/replace

existing functionality currently controlled by different

GUI elements. The top half of Table 1 includes lists how

the input of various traditional GUI controls can be created

using geometric relationships both within and between

objects as well as virtual controls (buttons, sliders, etc.)

projected by the system. We have developed a wide range

of controls available to users as disposable UI elements.

We elaborate on a subset of the developed EUI’s based on

exiting GUI controls here:

(Toggle)Button: To simulate a button, we can use any

tracked object and create an interaction such that when the

object is in a certain location (Object in Position), the

associated button is 'pushed'. For toggle buttons, the

persistence of the physical object’s presence naturally

supports the button’s current state. To activate a push

button with a physical object multiple times, the object has

to be sensed, removed, and sensed a second time.

Similarly, the orientation of the object may be used to

indicate the state of a button, such as for the PowerPoint

“Next Slide” example discussed previously (Object in

Orientation).

Slider: The user can employ a tracked object(s) and define

two positions as start and end positions. Depending on its

current position between them (Object Between Positions),

a value is passed to emulate a slider with that value. This

slider is visualized as a projected path or a linear slider with

two physical objects as end points (Figure 4). The

projected path may be linear, a high order curved path, or

an arc. The path can be tracked on 2D or 3D surfaces.

Figure 4: Objects used to as a slider control for

volume

Radio Button: Given a set of options, we can use an object's

orientation in a single axis (Object Between Orientations)

to select an option. For each different orientation, a

different radio button is selected (Figure 5). Since the

object can only have one orientation at any time, only one

option can ever be selected. This approach could also be

used to emulate a dial. Likewise, the position of a single

object may be employed to indicate which radio button is

on.

Figure 5: Object used as radio button (digital overlay

added for illustration)

List Box: Given a list of items (similar to a menu), the user

can use a tracked object, e.g. a pen, and set two different

orientations on the table plane, the rotation of the object

between those orientations can then be used to interpolate

a value and select the appropriate index in the list.

Spinner: A spinner has a small set of discrete values. The

user can use the proximity of objects (Figure 6) to set the

Figure 6: Using physical proximity as valuator (digital

overlay added for illustration)

CRPIT Volume 150 - User Interfaces 2014

34

value for the spinner. The distance between two objects

may be employed to set the value for an individual spinner

value (Object Proximity). As the object moves further

away, the value increases.

Menu: To emulate a menu system such as a pie menu, we

can use the orientation of a fixed object at different

rotations to select different items, similar to the radio

button functionality. Rotating the object means selecting a

different menu item. Given any number of different menu

options, we can also utilize projected touch-based buttons.

Tab: To switch to different tabs, the user can associate

different tracked blocks with each tab. To switch tabs, the

user places one of the tracked objects into the workspace

to make it visible (Object is Visible). The associated

system tab is then selected.

5.2 Input Devices

Using the sensing capabilities of the system, the user can

create active user controls from completely passive

components. These UIs can supplement or replace existing

input devices with user defined ones. We are interested in

investigating controlling more complicated interactions

instead of just emulating GUI-like elements. The bottom

half of Table 1 outlines how some common input devices

can easily be created using the system. The system also

enables the user to create input controls in place of existing

input devices, including the following:

Mouse: As per the Slider example above, the user can

define a 2D area using two perpendicular sliders utilizing

a common position (an ‘L’ shape). We can then use the

position of an object for each slider to define both the X

and Y position of the cursor. The control of the cursor can

also be in relative scaled coordinates, similar to a touchpad

device.

Keyboard: Using touch on the tabletop surface, a user

could emulate a software keyboard.

Joystick: As a tangible example, using a simple whiteboard

marker, we can define a joystick (Figure 1d) using the

orientation across two different orientation axis (x-min

left, x-max right, y-min down, y-max up) and immediately

control any number of games. Using a cup and two rubber

bands, we can quickly improvise a self-centring joystick

capable of controlling applications.

Steering Wheel: We can use any circular object tracked

with reflective markers and use the angle between two

defined orientations (rotated left and right extremes) as the

input value. This provides input akin to the Wii console’s

steering wheel controller.

Figure 7: Passive steering wheel used as an active

input device using tracking markers (visible on top)

6 System Design

To support ad-hoc interaction, we extended the TAM

architecture (Walsh et al., 2013). This work focused on

programming the logic of tangible interactions, the ‘how’

of the interaction, whereas we focus on the ‘what’ of the

interaction. One study participant described this as telling

the system, “what to do, not how to do it”. As such, our

work assumes the system already has a set of predefined

functions, and instead focuses on how control those

functions at run time. In addition, the previous work does

not support interacting with external systems and is

designed for all interactions and feedback to take place

within the system.

The previous architecture physical objects as

InteractionObjects (InObjs) with associated Properties

(position, color, touch points, etc.). Different Action

objects evaluate the Properties according to a given criteria

(e.g. rotation around an axis for a rotation input). Using

that Boolean result, an Interaction object monitors when

the Action occurs, and modifies any number of Properties

of different objects as a result. By using the properties of

physical objects (location, orientation, etc.) we can

leverage them as input for existing systems.

We extend the architecture in four ways: 1) allow Actions

to have some form of native representation to indicate their

current state, 2) allow Actions to have Properties to

communicate a non-boolean state to other components, 3)

introduce support for VirtualPropeties as a way to

communicate with external systems without incorporating

any system-specific code in the core application, and 4)

allow external systems to pass information into the system

and use that information as an input for the internal patch

panel as if it were a normal input from the user.

6.1 Allowing Actions to Have a Representation

Whilst the original architecture was focused on purely

tangible interactions, this work has focused on a

physical/projected hybrid. Actions that monitor input need

to be able to report some kind of state, e.g. buttons not only

need to register for a press, but have some representation

(i.e. a projected button). Given the Action object evaluates

input, it is the only component that is aware of the context

of the value (i.e. is the value based on distance, rotation

etc.?), it must be responsible for creating any

representation for that Action. As such, we assign Action

a method to render its state in some form, e.g. in our

implementation using OpenGL. This representation is

generated based on its current state. For example, a button

would render the button display (changing if pressed), or

lines to indicate the distance between objects, etc.

6.2 Allowing Actions to Have Properties

Given the purpose of the Action component to monitor the

state of an interaction, we add any number of Properties to

it to represent its current state and configuration. This

value is then read as part of an Interaction, and used to

update Properties of other objects.

6.3 VirtualProperties for External Functions

To integrate with existing systems, we require some

external communication method. A VirtualProperty (VP)

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

35

was created to enable communication of a value

represented inside the system to an external application.

These VPs are associated with single Interaction. A VP

takes in a string containing an application name (and

required parameters, if any), to run when the Property is

set. This string is passed when the VP is created, and could

itself be a Property that can be edited at run time. It was

thought that by executing an application instead of an API

call, we simplify the system by excluding API libraries

from the core system, without losing any functionality.

This approach also allows the integration of existing

applications that can be run/controlled using the command

line and allows our system to be used by non-developers.

To format a user control’s output as a valid form of input

for a specific application, VPs contains a scaling and

format setting for how the data should be transformed

before the application is executed. This scaling operation

includes: minimum, maximum, user defined range, and no

modification options. For example, to use the rotation of

an object as a 6-value radio dial (Figure 5), you would

define a range of 1 (min) and 6 (max). The rotation of an

InObj would then be transformed to the range 1-6. Using

this, valuators such as sliders or dials can be used to give a

value across any given range or even to a Boolean value.

For Actions that provide persistent values, e.g. using the

position of an object, VP also contains a rate limiting timer

(defined in milliseconds) to restrict the rate of execution

for the related application. This defaults to zero for no

limit.

All functions that can be controlled are defined (Figure 8)

in an XML file, with functions grouped in any arbitrary

manner (following the results of the preliminary study).

Groups are used to define logical sets of related functions

for a given task, meaning they may not all interact with the

same application. Rather, they all interact with different

applications to manage a common task. As such, functions

can appear multiple times across any number of groups.

Each XML definition defines a program to be executed

when an attribute is set, along with how values pass to that

program should be limited/scaled. A user-friendly name is

also provided and used within the system to identify that

mapping.

<output execute="joystick.exe setX %i" ratelimit="0"
scale="range" min="0" max="1080" name="Joystick X" />

Figure 8: Example mapping of a single axis of a

joystick

6.4 Allow External Systems to Send Data

Our system allows external applications and systems to act

as native input controls. For example, our current

implementation only senses touch and geometric

relationships as forms of input. Using this approach, an

application that monitors pressure exerted on digital foam,

or the user’s voice or gestures can pass this information

into the system as a valid control to be utilized by the user.

In a similar approach to enabling external functions, we

use a string to integrate external systems for passing

information into the system. Input from external systems

is supported through a VirtualAction object. These triggers

are defined in a similar XML format to outputs, defining a

user readable name, keyword and what parameters are

provided. This allows external systems to send a string via

TCP in the format “triggerkeyword parameter1value”. In

addition to TCP, we wrote a simple application

(SendData.exe) that, when executed, directly passes data

arguments into the system as if it were sent via TCP.

An associated VirtualAction produces this value as if it

were sensed natively, thus registering as a valid input (like

a button, etc.). Because this interaction appears as normal

input, it can be mapped back to external applications using

VP’s, only to be read in again. This ability to both read and

write to external systems enables the creation of feedback

loops (Figure 9), creating support for embodied OUIs.

Figure 9: Information feedback loop

This approach simplifies adding new controls to the

system, removing the requirement to write system-specific

code. For example to integrate Phidgets, you could simply

take the example programs and add one line of code to

execute SendData.exe and pass in a keyword and the value

from the Phidgets. Any new type of input not currently

supported by the system (pressure, sound, light, voice, etc.)

can easily be incorporated as if it were a native capability

of the system. This also enables existing applications that

can be controlled via the command line to be controlled via

these ad-hoc controls, allowing the user to incorporate new

functionality without writing any code, a point of

difference when compared to previous homogeneous

systems.

7 Future Work

A full evaluation of our implementation remains as future

work. Whilst this work enables the ad-hoc creation of

tangible controls for existing functions, further work

remains in the area of temporal and direct manipulation

interactions for virtual content. In addition to this, the

object-based interactions do not currently support the full

set of proximity based relationships between multiple

objects (e.g. an angle between two objects). These could

be implemented to ensure full support of proximity based

relationships both within and between objects, as used in

the Proximity Toolkit (Marquardt et al., 2011).

8 Conclusion

In this paper we have presented our system to support

ephemeral interaction using everyday objects and an

architecture to support their ad-hoc creation, including the

incorporation of new types of input and functionality not

supported by the original system. This system supports

creating controls to simulate input from existing GUI

controls as well as supporting the creation of novel

tangible input devices made from passive components.

Using design decisions employed from a preliminary study,

we have presented an example system and techniques for

enabling end users to create a wide range of arbitrary user

controls, both tangibly and virtually, to control existing

functionality.

Input Patch

Panel

External

Function

CRPIT Volume 150 - User Interfaces 2014

36

9 Acknowledgements

The authors would like to thank the reviewers for their

feedback and thoughts and regarding the paper.

10 References
AKAOKA, E., GINN, T. & VERTEGAAL, R. 2010.

DisplayObjects: prototyping functional physical

interfaces on 3d styrofoam, paper or cardboard

models. Proceedings of the fourth international

conference on Tangible, embedded, and

embodied interaction. Cambridge,

Massachusetts, USA: ACM.

AVRAHAMI, D. & HUDSON, S. E. Forming

interactivity: a tool for rapid prototyping of

physical interactive products. Proceedings of the

4th conference on Designing interactive systems:

processes, practices, methods, and techniques,

2002 London, England. ACM 141-146.

BALLAGAS, R., SZYBALSKI, A. & FOX, A. 2004.

Patch Panel: Enabling Control-Flow

Interoperability in Ubicomp Environments. In:

ANDY, S. & ARMANDO, F. (eds.) Second IEEE

International Conference on Pervasive

Computing and Communications. Orlando,

Florida.

DORING, T., SYLVESTER, A. & SCHMIDT, A. 2013. A

design space for ephemeral user interfaces.

Proceedings of the 7th International Conference

on Tangible, Embedded and Embodied

Interaction. Barcelona, Spain: ACM.

FAILS, J. A. & OLSEN, D. 2002. Light widgets:

interacting in every-day spaces. Proceedings of

the 7th international conference on Intelligent

user interfaces. San Francisco, California, USA:

ACM.

FITZMAURICE, G. W., ISHII, H. & BUXTON, W. A. S.

1995. Bricks: laying the foundations for

graspable user interfaces. Proc. of the SIGCHI

conference on Human factors in computing

systems. Denver, Colorado, United States: ACM

Press/Addison-Wesley Publishing Co.

GREENBERG, S. & FITCHETT, C. 2001. Phidgets: easy

development of physical interfaces through

physical widgets. Proc. of the 14th annual ACM

symposium on User interface software and

technology. Orlando, Florida: ACM.

HARDY, J. & ALEXANDER, J. 2012. Toolkit support for

interactive projected displays. Proceedings of the

11th International Conference on Mobile and

Ubiquitous Multimedia. Ulm, Germany: ACM.

HENDERSON, S. & FEINER, S. 2010. Opportunistic

Tangible User Interfaces for Augmented Reality.

Visualization and Computer Graphics, IEEE

Transactions on, 16, 4-16.

HENDERSON, S. J. & FEINER, S. 2008. Opportunistic

controls: leveraging natural affordances as

tangible user interfaces for augmented reality.

Proceedings of the 2008 ACM symposium on

Virtual reality software and technology.

Bordeaux, France: ACM.

HOLMAN, D. & VERTEGAAL, R. 2008. Organic user

interfaces: designing computers in any way,

shape, or form. Communications of the ACM, 51,

48-55.

HUDSON, S. E. & MANKOFF, J. Rapid construction of

functioning physical interfaces from cardboard,

thumbtacks, tin foil and masking tape.

Proceedings of the 19th annual ACM symposium

on User interface software and technology, 2006.

ACM, 289-298.

ISHII, H. & ULLMER, B. 1997. Tangible bits: towards

seamless interfaces between people, bits and

atoms. Proc. of the SIGCHI conference on

Human factors in computing systems. Atlanta,

Georgia, United States: ACM.

KJELDSEN, R., LEVAS, A. & PINHANEZ, C. 2003.

Dynamically Reconfigurable Vision-Based User

Interfaces. In: CROWLEY, J., PIATER, J.,

VINCZE, M. & PALETTA, L. (eds.) Computer

Vision Systems. Springer Berlin/Heidelberg.

KLEMMER, S. R., LI, J., LIN, J. & LANDAY, J. A. 2004.

Papier-Mache: toolkit support for tangible input.

Proc. of the SIGCHI conference on Human

factors in computing systems. Vienna, Austria:

ACM.

MARQUARDT, N., DIAZ-MARINO, R., BORING, S. &

GREENBERG, S. 2011. The proximity toolkit:

prototyping proxemic interactions in ubiquitous

computing ecologies. Proc. of the 24th annual

ACM symposium on User interface software and

technology. Santa Barbara, California, USA:

ACM.

ODA, O., LISTER, L. J., WHITE, S. & FEINER, S. 2007.

Developing an augmented reality racing game.

Proceedings of the 2nd international conference

on INtelligent TEchnologies for interactive

enterTAINment. Cancun, Mexico: ICST (Institute

for Computer Sciences, Social-Informatics and

Telecommunications Engineering).

SHARLIN, E., WATSON, B., KITAMURA, Y.,

KISHINO, F. & ITOH, Y. 2004. On tangible user

interfaces, humans and spatiality. Personal and

Ubiquitous Computing, 8, 338-346.

ULLMER, B. A. 2002. Tangible interfaces for

manipulating aggregates of digital information.

Doctor of Philosophy, Massachusetts Institute of

Technology.

VILLAR, N., BLOCK, F., MOLYNEAUX, D. &

GELLERSEN, H. 2006. VoodooIO. Proc. of

ACM SIGGRAPH 2006 Emerging technologies

Boston, Massachusetts: ACM.

WALSH, J. A., ITZSTEIN, S. V. & THOMAS, B. H.

2013. Tangible Agile Mapping: Ad-hoc Tangible

User Interaction Definition. In: SMITH, R. &

WUENSCHE, B. (eds.) Australasian User

Interface Conference. Adelaide, Australia:

CRPIT.

XIAO, R., HARRISON, C. & HUDSON, S. E. 2013.

WorldKit: rapid and easy creation of ad-hoc

interactive applications on everyday surfaces.

Proceedings of the 2013 ACM annual conference

on Human factors in computing systems. Paris,

France: ACM.

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

37

