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Abstract 

The ability for Tangible User Interfaces to enable the 

intuitive control of existing systems and adapt to individual 

users’ usage scenarios remains an area of development. 

Previous research in customizable tangible interfaces has 

focused primarily on the offline creation by the original 

system developer, instead of offering extensibility to the 

end user. This paper presents our system to support the ad-

hoc creation of ‘disposable’ UIs using both projected 

controls and physical objects. To support these controls, a 

software based patch panel enables data to be mapped to 

external systems, and from external systems back to the 

system itself. Using a projector, depth camera and 6DOF 

tracking system, users can create and map tangible/touch-

based ad-hoc user controls to existing system functionality. 

This allows users to both quickly create new inputs for 

existing functionality, as well as create new arbitrary input 

devices from completely passive components.  

Keywords:  user interfaces, ephemeral, tangible, 

projected, extensible customizable, reconfigurable. 

1 Introduction 

Following the concept of Ephemeral User Interfaces (EUI) 

(Doring et al., 2013) as a temporary means of 

communication, we extend this concept to allow the user 

to construct disposable (ad-hoc) UIs to control existing 

systems and applications using physical objects (tangibles) 

and projected content in the environment. These temporary 

UI’s are designed to support the creation of UIs to control 

a subset of a system’s existing functionality for short term 

usage (minutes to hours). For example, when cooking in the 

kitchen, users often need to quickly create a timer based on 

the current recipe’s task. This could easily be done by 

allowing the user to rotate a kitchen utensil on the counter to 

set the time. A projector displays the time, with adjustments 

made by further rotations. This leverages the affordances of 

objects available in a natural, tangible interaction. 

The motivation for these interfaces comes from the need to 

enable a system with a known set of functions to adapt to 

the context and capabilities of the user at time of use, 

something the original designer cannot envision. For the 

kitchen timer scenario, we know that a timer will be 

required, but not the parameters or the context, given the 

user may have limited space or be limited to one handed 

interaction. Similarly, someone sitting on the couch can 

quickly draw a line armrest to control the volume/channel 

whilst resting their arm on the arm rest. As such, there is a 

need for ad-hoc controls that enable users to rapidly create 

controls based on the current context, ideally leveraging 

the affordances of the immediate environment. Previous 

touch-based systems (Akaoka et al., 2010, Henderson and 

Feiner, 2008, Xiao et al., 2013), have shown a need for ad-

hoc interaction, but were designed for developers, 

excluded tangible interactions and did not support the 

integration with existing systems.  

Whilst previous work (Akaoka et al., 2010, Avrahami and 

Hudson, 2002) has looked at creating interactive 

prototypes from passive materials, all interaction has been 

touch based, ignoring the geometric and spatial 

relationships that Tangible User Interfaces (TUIs) (Ishii 

and Ullmer, 1997) offer. Our work focuses on the end user, 

enabling them to utilize the proxemic relationships 

(position, orientation, visibility, etc.) of objects available 

in the immediate environment, as well as touch interaction 

as a means of input. We believe TUIs to be a key 

component in ad-hoc interaction that is yet to be explored. 

In this paper, we explore the application of non-traditional 

tangible interaction to ad-hoc EUIs. We are interested in 

the use of everyday objects as props for supporting TUIs 

and the use of projectors to augment the user’s workspace. 

Through the use of a software patch panel, such as 

Ballagas et al. (2004), we can isolate the UI from the 

application being controlled. This allows information to 

flow from the user defined UI, through the patch panel to 

the end application. This means the system to create the 

UIs and the systems/functions to be controlled can be 

developed independently. This paper makes the following 

contributions: 

 we present extensions to an existing TUI 

architecture to support ephemeral touch and 

tangible UIs, including support for incorporating 

input from external systems,  

 a paradigm to support ephemeral UIs for a wide 

range of existing GUI input controls, and 

 a mechanism to develop ephemeral input devices 

from passive components using touch and 

geometric relationships. 

The first contribution addresses the core system design to 

support ad-hoc controls and interactivity, including 

integration with existing arbitrary systems. We present an 

implementation of a software patch panel for our architecture 

that is capable of passing parameters to individual 

applications provided by the end user. This allows the user to 

integrate the ad-hoc controls with any existing system. This 

patch panel also allows inputs to be passed into the system 

from external systems, allowing the incorporation of input 
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methods not supported by the original system, as well as 

support for feedback loops. 

The second contribution describes a comprehensive set of 

example interactions to control existing applications. These 

are based on the existing tangible controls and the results of a 

preliminary study.  

The final contribution outlines methods for allowing the user 

to create interactive, novel tangible UIs on-the-fly from 

passive physical components that utilize both touch and the 

geometric relationships both of-and-between objects. This 

allows the user to create disposable controls, on demand.  

Following this, our work focuses on ‘what’ functions to 

perform, not ‘how’ to do them, extending our previous work 

in tangible programming by demonstration (Walsh et al., 

2013). We acknowledge a number of our concepts require 

ubiquitous and highly portable sensing and projection 

technologies. In this paper, we are only focused on the 

architecture and methods to support interactions. 

The remainder of this paper is structured as follows: related 

work is discussed, identifying related projects and influential 

factors. A summary of the system and how it is used is 

provided, providing a number of example applications. A 

preliminary study that served as the initial design phase is then 

described, leading into a description of the system 

implementation and design. We then conclude with future 

work and final thoughts. 

2 Related Work 

Our work follows previous human computer interaction 

work relating to TUIs, reconfigurable UIs, and their 

supporting architectures. 

Doring et al. (2013) presented the ideas of EUIs as UIs that 

have at least one element designed for limited time use. 

They defined a design space for EUIs incorporating a) 

materials, b) interactions (input vs. output) and c) aspects 

of ephemerality. Using this design space, our work is 

focused on selecting the right material for the job (a), 

primarily as a form of input (b). Their exploration of 

ephemerality came from the materials used (fog, ice, jelly, 

etc.). We however utilize multiple objects that when 

together, serve as an appropriate input EUI, but when split 

apart fulfil their original roles (c). Despite objects being 

persistent on their own, it is their utility together that is 

ephemeral. 

2.1 Tangible UIs 

TUIs utilize the affordances of physical objects, spaces and 

surfaces as an interface to digital functionality (Ishii and 

Ullmer, 1997). Fitzmaurice et al. (1995) began exploring 

TUIs as Graspable UIs, using 6DOF tracked ‘bricks’ to 

manipulate digital elements This allowed users to explore 

the advantages of bi-manual, spatial interaction with 

digital functionality. Despite the nature of ad-hoc 

interaction meaning we are surrounded by tangible objects, 

previous work has failed to leverage TUIs on an equal level 

to ad-hoc touch interaction. 

The embodiment of TUIs led to the creation of Organic 

User Interfaces (OUIs) (Holman and Vertegaal, 2008), 

exploring non-planer displays that are both input and 

output. This embodiment blurs the distinction between 

input and output and closely mirrors the feedback loop that 

we experience in the real world with cause and effect 

(Sharlin et al., 2004).  

Ullmer (2002) proposed a TUI architecture equivalent to 

the GUI Model-View-Controller (MVC) architecture, 

identifying three categories of TUIs; interactive surfaces, 

constructive assemblies, and Tokens and Constraint 

(TAC). These TACs utilized the unique affordances of 

individual objects as logical constraints on the object. For 

example, an elongated groove suggests placing an object 

in that groove to assign a value across a range. It is these 

kinds of affordances that this work hopes to leverage. 

2.2 Reconfigurable TUIs 

Akaoka et al. (2010) explored the creation of active 

prototypes from passive materials as DisplayObjects. 

Using markers to track a passive object, predesigned 

virtual content (buttons, displays, etc.), designated as 

inputs or outputs, can be dragged from a Physical-Virtual 

palette onto the object. Pressing ‘Play’ on the palette 

allowed users to interact with the device. More intricate 

interactions between input and output controls was 

possible using the computer to generate scripts. 

Avrahami, and Hudson (Avrahami and Hudson, 2002) 

used push-pin enabled RFID buttons and sliders to 

prototype input devices, enabling reconfiguration of 

physical inputs for non-planar surfaces. Building on this, 

the BOXES project (Hudson and Mankoff, 2006) looked 

at using thumbtacks attached to a circuit board to trigger 

user-defined macros. Upon touching a thumbtack, the 

software could emulate a touch at a given screen 

coordinate or simulate any number of predefined 

mouse/keyboard inputs, essentially defining a macro. 

Using the tacks with cardboard and tape allowed users to 

quickly prototype button based interaction on physical 

prototypes. 

Both Phidgets (Greenberg and Fitchett, 2001) and 

VoodooIO (Villar et al., 2006) explored configurable 

component based UIs. Both systems offered a number of 

input controls and could be reused and repositioned, with 

Phidgets using cables to connect to a PC and VoodooIO 

using push-pin components to link to a conductive 

communication layer in a foam substrate. The processing 

of the input into system functionality was an offline 

process done by the developer. Whilst both enabled ad-hoc 

reconfiguration, the user was limited by components for 

which they do not have an input device. 

In exploring touch-based UIs, Light Widgets (Fails and 

Olsen, 2002) explored ubiquitous touch interaction using 

cheap, pervasive cameras. Using a PC application to select 

an input type and a region on a camera’s viewport for the 

control to be located, users could touch that location to 

interact. Aside from the offline creation of the UI controls, 

there was no feedback to the user aside from whatever 

function was being controlled by that input. Tangible 

interaction outside of touch was also not supported. 

Henderson and Feiner explored Opportunistic Controls 

(OCs) (Henderson and Feiner, 2008) to enable natural 

navigation of situated Augmented Reality (AR) systems, 
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whilst leveraging passive feedback from the environment. 

Buttons, dials, etc. would utilize physical surfaces and take 

advantage of the affordances of those surfaces, e.g. a dial 

using a rotating bolt. Given the focus on AR for 

mechanical instruction, the OCs were predefined using 

knowledge of the environment the user would be in (e.g. 

located in front of a certain model of aircraft engine). As a 

future direction, Henderson and Feiner (2010) identified 

the capability for a user to locate an object, select a widget 

type and specify the mapping for that object. This work 

directly addresses that void. 

2.3 Interaction Toolkits 

Whilst frameworks exist to abstract TUIs and facilitate 

easier access, they are primarily for the developer. 

WorldKit (Xiao et al., 2013) provided developers with a 

software framework that uses a projector/depth camera 

pair to enable pervasive interaction. By abstracting the 

sensing and projection system to provide the developer 

with simple events, the developer can easily create 

applications that respond to real world manipulation, such 

as touch input and object presence. Despite enabling 

pervasive interaction in the environment, the system 

cannot be customized given the controls and their 

functions are defined by the original developer of the 

application. Our work addresses this void. 

The Papier-Mâché (Klemmer et al., 2004) project enabled 

the fusion of different sensor inputs, allowing the 

developer to focus on events, rather than hardware sensors. 

This is along a similar line to the Proximity Toolkit  

(Marquardt et al., 2011) in providing a set of abstracted 

proxemic events both within and between objects. 

Kjeldsen et al. (2003) abstracted visual input, but allowed 

the application to ask middleware for a given input (e.g. a 

button), and have that control be dynamically created 

given current context. 

Hardy and Alexander (2012) provided a toolkit for 

developing interactive projected displays. Focusing on 

developers, it abstracts the projectors and sensing 

hardware to provide information about touch-based 

interaction. This allowed the developer to focus on the 

application content and interactivity rather than managing 

display surfaces and their relation to sensed input. Our 

work focuses uses a similar approach to enable UI creation 

by end users, rather than developers.  

2.4 Summary 

Despite work looking at reconfigurable touch and tangible 

interfaces, previous attempts have stopped short of 

enabling completely ad-hoc interaction for arbitrary TUIs, 

instead focusing on touch interaction, primarily with some 

offline component for the mapping of them to a function 

to control. Following on from WorldKit and the future 

work identified by Henderson and Feiner in OCs, this work 

seeks to enable end users to define tangible and projected 

controls for existing functionality, whilst also integrating 

existing systems as a form of input.  

3 Using Our EUI’s 

Our implementation uses a projector and depth camera 

(Kinect) along with an Optitrack 6DOF tracking system, 

used to identify objects between frames. Using a 

combination of the Kinect and Optitrack retro-reflective 

marker trackers, we can detect touches, objects and 

contours (using the Kinect) as well the position, orientation 

and visibility of objects (using the Optitrack). In the future 

we envision that RGBD cameras combined with computer 

vision algorithms will replace the need for the 6DOF 

sensing technology currently used. The system runs ~56fps 

during use. The Kinect faces down onto a tabletop where 

all controls are initially authored.  

To illustrate how to use the system, we shall use an 

example of navigating a slideshow using whiteboard 

marker. Under normal usage, the selection of the 

function/system to control would be based on the user’s 

current context.  

As a means to “boot strap” our system, we use a Griffin 

PowerMate (supporting a button, rotation sensor and blue 

LED) as the initial means of input, however we do not 

utilize the rotation function (the justification for the button 

is provided in Section 4). To provide feedback to the user 

regarding when the system expects input via the button or 

touch input, the button’s LED glows (1Hz) when the 

button can be used. In the future, we will investigate other 

modes of engaging the system that do not require an 

external input device. 

To create a new input control, the user first presses the 

button. The different functions available for control 

(defined and grouped hierarchically in an XML file, 

discussed later) are then displayed as buttons. The user 

then touches the function they wish to create a control for.  

In this example, the user would select the ‘PowerPoint’ 

group and select the ‘Next Slide’ function. 

It is at this point the system requires an understanding of 

what application function the user requires a new control 

for.  Depending on how many parameters the function 

requires (also defined in the XML), different input controls 

can be used. For example, setting the volume would 

require a parameter from a valuator. In our slideshow 

example, the “Next Slide” function does not require any 

parameters. The different options available for controlling  

      

Figure 1: Interacting with dial control (a), slider control on an object (b), interactive lever (c) and improvised 

joystick (d) 

(a) (c) (d) (b) 
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that function are presented to the user as projected touch 

buttons. Upon selecting one, the user is guided through 

creating that control. For our “Next Slide” function, we 

select “Object Orientation” and place the marker we want 

to use on the table and then press the button to confirm the 

object selection. The system then prompts the user to 

orientate the object and the press the button. We hold the 

marker and point to the right side of the room and press the 

button. This links this orientation of the marker to the 

“Next Slide” function, allowing us to point the marker to 

the right to navigate to the next slide. This means we can 

now walk around the room, taking the user control 

(marker) with us, navigating the slides as required, 

something not possible with previous touch based systems. 

The same process can then be repeated for going to the 

previous slide. The whole process of creating a new control 

takes only seconds and  single object can be used in 

multiple interactions simultaneously, e.g. a marker used as 

a joystick (Figure 1d) to define both an X and Y value.  

When creating projected controls, the process involves the 

user using their finger to define that control on a surface. 

For example, to define a dial control the user touches the 

center of its location and drags out the radius and then 

continues dragging to define the size of the dial’s 

arc/circle. Projected controls can utilize any physical 

objects as part of the interaction (e.g. a lever’s handle can 

trigger a virtual button).  

To edit controls already created, the user holds the button 

for more than one second. Projected controls then begin to 

wobble in a similar fashion to the press-hold-wobble 

interaction on mobile devices. Users can then touch and 

drag controls around the table, or drag them off the bottom 

of interaction area to remove them. To edit object-based 

interactions, the involved object is placed in the middle of 

the table, at which time the system presents buttons for 

each interaction involving that object. These buttons can 

then be dragged off the table to delete the interaction 

associated with that object. 

3.1 Example Applications 

We have created a number of example mappings to control 

different applications across a number of domains to 

demonstrate the system’s functionality. 

Video Editor: The user views the video on an external 

screen, with the system creating controls for the timeline 

and cutting/joining sections of the film. The most basic 

controller would be a slider with (at least) two buttons for 

cutting/saving the film (Figure 2), but could be more 

elaborate using a guillotine prop to ‘cut’ the film and  

  

Figure 2: Ad-hoc video editing controls on their own 

(left) and supplementing the existing controls (right) 

another to join it. Different video clips to be split can be 

associated with different objects, allowing the user to 

rapidly switch between clipping/joining different files. 

Audio Mixer: Allows the user to load and control media 

whilst adjusting individual audio channels and settings, 

creating an on demand, customizable DJ-style mixing 

board. What is novel is the user can create as many controls 

as required for the particular task, and destroy them when 

not required. Because the system is not limited to vertical 

or horizontal controls, the channels could be linked to 

dials, sliders and levers, etc., located at different positions 

and orientations surrounding the user, instead of having 

controls laid out in a linear fashion. Tangible objects 

provide persistence, visual feedback, and tactile feedback. 

The use of an application supporting MIDI mappings 

would enable integration with thousands of existing 

applications outside of just PC audio applications.  

 

Figure 3: Basic multichannel ad-hoc audio control 

board 

Game Controller: Allows customizable game controllers 

to be created. Given the ability to use passive objects as 

active input, users can use a child’s pretend steering wheel 

as an ad-hoc means of controlling racing applications, such 

as with the AR simulation by Oda et al. (2007). 

Since controls can quickly be created with arbitrary 

materials and turned into functional interfaces, another 

application is for developing user controls without having 

to integrate electronics with each iteration, e.g. using 3D 

printers. Figure 1c depicts a 3D printed throttle-style lever 

found in airplanes that could work as a functional input 

device for a flight simulator, without requiring 

modifications to the game. Despite this application not 

directly being ad-hoc, we can still leverage near-by 

materials to quickly create such controls in an ad-hoc 

manner, where inputs are dynamically created on the fly 

from passive materials. 

We envision applications to developing large scale user 

controls. By utilizing a realistic simulator using the 

required mappings, we can design industrial control rooms 

whilst controlling a working simulation with passive input 

controls. This allows the user to experiment with 

configurations for different scenarios (e.g. day-to-day 

versus an emergency) inside the simulator, creating 

controls as needed. 

4 Preliminary Study 

A preliminary study was conducted in the initial design 

stages to evaluate how users would ideally create controls 

to interact with existing systems. This study was similar to 

CRPIT Volume 150 - User Interfaces 2014

32



that used by Henderson and Feiner (2010) for OCs. 

Participants were given a number of everyday arbitrary 

objects (blocks, pens, smart phones, scissors, etc.) and 

asked to create UIs to control different tasks (selection, text 

entry, path definition, etc.) across different applications 

(both within and outside the users reach) using three types 

of UIs: touch, passive tangible and active tangible. 

Participants were surrounded by writable surfaces 

(whiteboard and paper covered surfaces) and asked to 

create controls for the tasks using the materials available. 

They were told to assume the system was ‘all seeing’ and 

asked to sketch out their ideas, experiencing a Wizard of 

Style evaluation. They were asked to describe the order 

they expected to be able to performed certain interactions, 

what navigation aids should be present and when/how to 

edit existing inputs, etc. Devices, menus and other content 

described was created using available materials. By 

evaluating the different types of input devices the users 

constructed from the available materials, as well as the 

manner and order in which they constructed them, we 

evaluated the types of ad-hoc controls the system should 

support, as well as how they expected to be able to create 

them within the system. Approximately half of the 

participants had a computer-science background. 

When asked about the procedure for creating controls, 

participants responded that the system should enable the 

user to select the function to control first, followed by 

selecting the input device and then how that device is 

mapped to the function. It was mentioned that the main 

thing they were thinking about was what function to 

control, and thus needed to “offload” that information into 

the system as soon as possible. This supports the workflow 

suggested at the conclusion of the work on OCs 

(Henderson and Feiner, 2010). When asked how the user 

should be able to select the function to control from a large 

set, participants said that functions should be able to be 

grouped, with the user first selecting the function group, 

then selecting the function itself. 

For the primary means of navigating the system, most 

participants wanted a different form of interaction than that 

supported by the system, i.e. use of a physical button 

instead of a touch-based button if interacting by touch. 

This was described as helping separate defining controls 

versus navigating the system. The workflow of the final 

system was followed these results. 

Participants used both traditional touch controls (buttons, 

dials, etc.) and proxemic relationships (between and within 

objects). Occasional hybrids were created where a tangible 

object would interact with a touch-based control, 

triggering the input, in addition to the tangible object’s 

own explicit input, e.g. a lever handle touching a virtual 

button. 

The different types of touch-based controls and 

interactions using objects served as the first types of 

interactions that were implemented in the system. The 

study also served as inspiration for how the user should be 

able to navigate the system and the information flow 

between user and system for creating interactions. 

5 Supported User Controls 

By sensing different types of user actions with physical 

objects and extending touch interaction to use arbitrary 

surfaces, we can create a functionally comprehensive set 

of UI controls to enable the user to both control existing 

computer applications and create new input devices in their  

Table 1: Mapping existing controls GUI/physical against how they can be controlled in the system (☑ Supported)

  Physical Touch 

  Position Orientation   

  

Object 
Between 
Positions 

Object 
in 

Position 

Object 

is 

Visible 

Object 

Proximity 
Object in 

Orientation 

Object 
Between 

Orientations  

  
Continuous Boolean Boolean 

Boolean and 
Continuous 

Boolean Continuous 
Boolean and 
Continuous 

Controls Button  ☑ ☑ ☑ ☑  ☑ 

 Radio Button ☑ ☑  ☑ ☑ ☑ ☑ 

 Slider ☑   ☑  ☑ ☑ 

 List Box ☑ ☑   ☑ ☑ ☑ 

 Spinner ☑ ☑  ☑ ☑ ☑ ☑ 

 Menu  ☑ ☑  ☑ ☑ ☑ 

 Tab  ☑ ☑  ☑ ☑ ☑ 

Input 
Device 

Mouse ☑     ☑ ☑ 

Keyboard       ☑ 

Joystick ☑     ☑ ☑ 

Steering Wheel ☑     ☑ ☑ 
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own right. Our initial demonstration of the concept 

employs the position, orientation, visibility or proximity of 

one or more physical objects and emulate touch interaction 

on objects and surfaces using a depth camera. By 

monitoring these types of interactions, we can support all 

the types of controls and interactions described in the 

preliminary study. Table 1 describes how our initial set of 

sensed user actions can be used to emulate and recreate a 

wide range of traditional system inputs. The column 

headings describe the different capabilities for input 

detection in our implementation, supporting both Boolean 

and continuous values. For a nullary function (one with no 

parameters, such as a button press) we sense one of the 

following properties of the object in relation to the sensed 

working space: visibility, absolute position (3D), and 

absolute orientation (all three angles), two objects within a 

set proximity as well as supporting touch-based buttons. 

For a single continuous value, the following relative 

geometric relationships are available: the position of an 

object relative to two 3D points, the orientation of an 

object relative to two defined start and end angles, distance 

between two objects as well as the value of a touch-based 

slider or dial. Functions requiring two parameters can 

utilize a projected touchpad.  

To enable extensibility, external applications can provide 

input to the system as if it were native input. These external 

applications either call an application “SendInput.exe” or 

connect to the system via TCP socket to send data. The 

external system sends a keyword to uniquely identify the 

input as well as any parameters for that input, e.g. the value 

from a joystick as “joystick 23 60” for the X and Y values. 

In the case of calling SendInput.exe, the keyword and 

values are just passed as arguments when the application 

is executed. This simple approach allows external systems 

to integrate other capabilities not currently supported, such 

as gesture, voice, pressure, light, etc. with minimal code.  

In Table 1, the checked boxes indicate particular GUI 

controls that are currently supported and implemented in 

either touch or tangible form. While we could conceive 

controls for every position in the table, the checkboxes 

represent the “sensible” interactions. Using data from 

6DOF tracking and depth camera systems, we can map the 

input sensed as controls to both control existing 

applications and to emulate/create physical input devices.  

5.1 GUI Control Substitution 

As discussed previously, a user can quickly create new 

controls in only three-to-four steps to compliment/replace 

existing functionality currently controlled by different 

GUI elements. The top half of Table 1 includes lists how 

the input of various traditional GUI controls can be created 

using geometric relationships both within and between 

objects as well as virtual controls (buttons, sliders, etc.) 

projected by the system. We have developed a wide range 

of controls available to users as disposable UI elements.  

We elaborate on a subset of the developed EUI’s based on 

exiting GUI controls here: 

(Toggle)Button: To simulate a button, we can use any 

tracked object and create an interaction such that when the 

object is in a certain location (Object in Position), the 

associated button is 'pushed'. For toggle buttons, the 

persistence of the physical object’s presence naturally 

supports the button’s current state. To activate a push 

button with a physical object multiple times, the object has 

to be sensed, removed, and sensed a second time. 

Similarly, the orientation of the object may be used to 

indicate the state of a button, such as for the PowerPoint 

“Next Slide” example discussed previously (Object in 

Orientation). 

Slider: The user can employ a tracked object(s) and define 

two positions as start and end positions. Depending on its 

current position between them (Object Between Positions), 

a value is passed to emulate a slider with that value. This 

slider is visualized as a projected path or a linear slider with 

two physical objects as end points (Figure 4). The 

projected path may be linear, a high order curved path, or 

an arc. The path can be tracked on 2D or 3D surfaces. 

 

Figure 4: Objects used to as a slider control for 

volume 

Radio Button: Given a set of options, we can use an object's 

orientation in a single axis (Object Between Orientations) 

to select an option. For each different orientation, a 

different radio button is selected (Figure 5). Since the 

object can only have one orientation at any time, only one 

option can ever be selected. This approach could also be 

used to emulate a dial. Likewise, the position of a single 

object may be employed to indicate which radio button is 

on.  

 

Figure 5: Object used as radio button (digital overlay 

added for illustration) 

List Box:  Given a list of items (similar to a menu), the user 

can use a tracked object, e.g. a pen, and set two different 

orientations on the table plane, the rotation of the object 

between those orientations can then be used to interpolate 

a value and select the appropriate index in the list. 

Spinner: A spinner has a small set of discrete values. The 

user can use the proximity of objects (Figure 6)  to set the  

 

Figure 6: Using physical proximity as valuator (digital 

overlay added for illustration) 
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value for the spinner. The distance between two objects 

may be employed to set the value for an individual spinner 

value (Object Proximity). As the object moves further 

away, the value increases.  

Menu: To emulate a menu system such as a pie menu, we 

can use the orientation of a fixed object at different 

rotations to select different items, similar to the radio 

button functionality. Rotating the object means selecting a 

different menu item. Given any number of different menu 

options, we can also utilize projected touch-based buttons. 

Tab: To switch to different tabs, the user can associate 

different tracked blocks with each tab. To switch tabs, the 

user places one of the tracked objects into the workspace 

to make it visible (Object is Visible). The associated 

system tab is then selected.  

5.2 Input Devices 

Using the sensing capabilities of the system, the user can 

create active user controls from completely passive 

components. These UIs can supplement or replace existing 

input devices with user defined ones. We are interested in 

investigating controlling more complicated interactions 

instead of just emulating GUI-like elements. The bottom 

half of Table 1 outlines how some common input devices 

can easily be created using the system. The system also 

enables the user to create input controls in place of existing 

input devices, including the following: 

Mouse: As per the Slider example above, the user can 

define a 2D area using two perpendicular sliders utilizing 

a common position (an ‘L’ shape). We can then use the 

position of an object for each slider to define both the X 

and Y position of the cursor. The control of the cursor can 

also be in relative scaled coordinates, similar to a touchpad 

device.  

Keyboard: Using touch on the tabletop surface, a user 

could emulate a software keyboard.  

Joystick: As a tangible example, using a simple whiteboard 

marker, we can define a joystick (Figure 1d) using the 

orientation across two different orientation axis (x-min 

left, x-max right, y-min down, y-max up) and immediately 

control any number of games. Using a cup and two rubber 

bands, we can quickly improvise a self-centring joystick 

capable of controlling applications. 

Steering Wheel: We can use any circular object tracked 

with reflective markers and use the angle between two 

defined orientations (rotated left and right extremes) as the 

input value. This provides input akin to the Wii console’s 

steering wheel controller. 

 

Figure 7: Passive steering wheel used as an active 

input device using tracking markers (visible on top) 

6 System Design 

To support ad-hoc interaction, we extended the TAM 

architecture (Walsh et al., 2013). This work focused on 

programming the logic of tangible interactions, the ‘how’ 

of the interaction, whereas we focus on the ‘what’ of the 

interaction. One study participant described this as telling 

the system, “what to do, not how to do it”. As such, our 

work assumes the system already has a set of predefined 

functions, and instead focuses on how control those 

functions at run time. In addition, the previous work does 

not support interacting with external systems and is 

designed for all interactions and feedback to take place 

within the system.  

The previous architecture physical objects as 

InteractionObjects (InObjs) with associated Properties 

(position, color, touch points, etc.). Different Action 

objects evaluate the Properties according to a given criteria 

(e.g. rotation around an axis for a rotation input). Using 

that Boolean result, an Interaction object monitors when 

the Action occurs, and modifies any number of Properties 

of different objects as a result. By using the properties of 

physical objects (location, orientation, etc.) we can 

leverage them as input for existing systems. 

We extend the architecture in four ways: 1) allow Actions 

to have some form of native representation to indicate their 

current state, 2) allow Actions to have Properties to 

communicate a non-boolean state to other components, 3) 

introduce support for VirtualPropeties as a way to 

communicate with external systems without incorporating 

any system-specific code in the core application, and 4) 

allow external systems to pass information into the system 

and use that information as an input for the internal patch 

panel as if it were a normal input from the user.  

6.1 Allowing Actions to Have a Representation 

Whilst the original architecture was focused on purely 

tangible interactions, this work has focused on a 

physical/projected hybrid. Actions that monitor input need 

to be able to report some kind of state, e.g. buttons not only 

need to register for a press, but have some representation 

(i.e. a projected button). Given the Action object evaluates 

input, it is the only component that is aware of the context 

of the value (i.e. is the value based on distance, rotation 

etc.?), it must be responsible for creating any 

representation for that Action. As such, we assign Action 

a method to render its state in some form, e.g. in our 

implementation using OpenGL. This representation is 

generated based on its current state. For example, a button 

would render the button display (changing if pressed), or 

lines to indicate the distance between objects, etc. 

6.2 Allowing Actions to Have Properties 

Given the purpose of the Action component to monitor the 

state of an interaction, we add any number of Properties to 

it to represent its current state and configuration. This 

value is then read as part of an Interaction, and used to 

update Properties of other objects. 

6.3 VirtualProperties for External Functions 

To integrate with existing systems, we require some 

external communication method. A VirtualProperty (VP) 
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was created to enable communication of a value 

represented inside the system to an external application. 

These VPs are associated with single Interaction. A VP 

takes in a string containing an application name (and 

required parameters, if any), to run when the Property is 

set. This string is passed when the VP is created, and could 

itself be a Property that can be edited at run time. It was 

thought that by executing an application instead of an API 

call, we simplify the system by excluding API libraries 

from the core system, without losing any functionality. 

This approach also allows the integration of existing 

applications that can be run/controlled using the command 

line and allows our system to be used by non-developers.  

To format a user control’s output as a valid form of input 

for a specific application, VPs contains a scaling and 

format setting for how the data should be transformed 

before the application is executed. This scaling operation 

includes: minimum, maximum, user defined range, and no 

modification options. For example, to use the rotation of 

an object as a 6-value radio dial (Figure 5), you would 

define a range of 1 (min) and 6 (max). The rotation of an 

InObj would then be transformed to the range 1-6. Using 

this, valuators such as sliders or dials can be used to give a 

value across any given range or even to a Boolean value. 

For Actions that provide persistent values, e.g. using the 

position of an object, VP also contains a rate limiting timer 

(defined in milliseconds) to restrict the rate of execution 

for the related application. This defaults to zero for no 

limit.  

All functions that can be controlled are defined (Figure 8) 

in an XML file, with functions grouped in any arbitrary 

manner (following the results of the preliminary study). 

Groups are used to define logical sets of related functions 

for a given task, meaning they may not all interact with the 

same application. Rather, they all interact with different 

applications to manage a common task. As such, functions 

can appear multiple times across any number of groups. 

Each XML definition defines a program to be executed 

when an attribute is set, along with how values pass to that 

program should be limited/scaled. A user-friendly name is 

also provided and used within the system to identify that 

mapping. 

<output execute="joystick.exe setX %i" ratelimit="0" 
scale="range" min="0" max="1080" name="Joystick X" /> 

Figure 8: Example mapping of a single axis of a 

joystick 

6.4 Allow External Systems to Send Data 

Our system allows external applications and systems to act 

as native input controls. For example, our current 

implementation only senses touch and geometric 

relationships as forms of input. Using this approach, an 

application that monitors pressure exerted on digital foam, 

or the user’s voice or gestures can pass this information 

into the system as a valid control to be utilized by the user. 

In a similar approach to enabling external functions, we 

use a string to integrate external systems for passing 

information into the system. Input from external systems 

is supported through a VirtualAction object. These triggers 

are defined in a similar XML format to outputs, defining a 

user readable name, keyword and what parameters are 

provided.  This allows external systems to send a string via 

TCP in the format “triggerkeyword parameter1value”. In 

addition to TCP, we wrote a simple application 

(SendData.exe) that, when executed, directly passes data 

arguments into the system as if it were sent via TCP.  

An associated VirtualAction produces this value as if it 

were sensed natively, thus registering as a valid input (like 

a button, etc.). Because this interaction appears as normal 

input, it can be mapped back to external applications using 

VP’s, only to be read in again. This ability to both read and 

write to external systems enables the creation of feedback 

loops (Figure 9), creating support for embodied OUIs. 

 

 

 

 

Figure 9: Information feedback loop 

This approach simplifies adding new controls to the 

system, removing the requirement to write system-specific 

code. For example to integrate Phidgets, you could simply 

take the example programs and add one line of code to 

execute SendData.exe and pass in a keyword and the value 

from the Phidgets. Any new type of input not currently 

supported by the system (pressure, sound, light, voice, etc.) 

can easily be incorporated as if it were a native capability 

of the system. This also enables existing applications that 

can be controlled via the command line to be controlled via 

these ad-hoc controls, allowing the user to incorporate new 

functionality without writing any code, a point of 

difference when compared to previous homogeneous 

systems.  

7 Future Work 

A full evaluation of our implementation remains as future 

work. Whilst this work enables the ad-hoc creation of 

tangible controls for existing functions, further work 

remains in the area of temporal and direct manipulation 

interactions for virtual content. In addition to this, the 

object-based interactions do not currently support the full 

set of proximity based relationships between multiple 

objects (e.g. an angle between two objects). These could 

be implemented to ensure full support of proximity based 

relationships both within and between objects, as used in 

the Proximity Toolkit (Marquardt et al., 2011). 

8 Conclusion 

In this paper we have presented our system to support 

ephemeral interaction using everyday objects and an 

architecture to support their ad-hoc creation, including the 

incorporation of new types of input and functionality not 

supported by the original system. This system supports 

creating controls to simulate input from existing GUI 

controls as well as supporting the creation of novel 

tangible input devices made from passive components. 

Using design decisions employed from a preliminary study, 

we have presented an example system and techniques for 

enabling end users to create a wide range of arbitrary user 

controls, both tangibly and virtually, to control existing 

functionality.  

Input Patch 

Panel 

External 

Function 
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